Sains Malaysiana 53(8)(2024): 1811-1818
http://doi.org/10.17576/jsm-2024-5308-07
Rawatan Plasma Nitrogen Suhu Bilik untuk Peningkatan
Fungsi Penyembuhan Pembalut Luka
(Room
Temperature Nitrogen Plasma Treatment for Advanced Wound Healing Functionality)
ANIN SOFYA MOHD AKHIRI1,
LUQMAN HAKIMI ABDUL AZIZ1, AINUL HAFIZA ABD HAIR2,
SARANI ZAKARIA1
& ROZIDAWATI AWANG1,*
1Jabatan Fizik
Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Centre of Foundation Studies,
Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, 43600 Dengkil,
Selangor, Malaysia
Received: 27 May 2024/Accepted:
26 June 2024
Abstrak
Pembalut luka
kain kasa digunakan dalam pengurusan luka didapati tidak mampu mengekalkan
persekitaran yang optimum untuk penyembuhan luka. Untuk mengatasi isu ini,
rawatan plasma nitrogen tanpa terma telah dikenakan ke atas pembalut luka kain
kasa menggunakan sistem pemendapan wap kimia secara peningkatan plasma
berfrekuensi radio (RF-PECVD). Penyelidikan ini mengkaji kesan kuasa frekuensi
radio (RF) yang berbeza (50, 60, 70, 80 dan 90 W) semasa rawatan plasma untuk
mengenal pasti kuasa RF yang optimum dalam meningkatkan fungsi kain kasa
sebagai pembalut luka yang ditentukan oleh sifat permukaan fabrik tersebut.
Mikroskop elektron pengimbasan pancaran medan (FESEM) dan spektroskopi
transformasi Fourier inframerah (FTIR) masing-masing telah digunakan untuk mengkaji
morfologi dan ikatan kimia sampel tanpa rawatan dan sampel dengan rawatan
plasma nitrogen. Imej daripada FESEM menunjukkan struktur gentian kain beralur
dengan rekahan mikro pada semua permukaan sampel yang dirawat. Rekahan mikro
yang paling ketara diperhatikan pada sampel yang dirawat dengan kuasa RF 50 W,
60 W dan 70 W. Spektrum FTIR menunjukkan terdapat peningkatan keamatan kumpulan
berfungsi O-H dan C-O untuk sampel dengan rawatan plasma berbanding tanpa
rawatan. Sampel yang dirawat dengan RF 70 W mempunyai kumpulan berfungsi C-N
dan N-H dengan keamatan tertinggi. Kumpulan berfungsi tersebut berupaya
menyumbang kepada peningkatan potensi kelekatan sel, kebolehbasahan dan
biokeserasian fabrik. Kajian ini menunjukkan bahawa kesan kuasa RF semasa rawatan
plasma nitrogen mampu mengubah suai sifat permukaan kain kasa seterusnya
berpotensi meningkatkan fungsi fabrik tersebut sebagai pembalut luka.
Kata
kunci: Kain kasa; kuasa RF; PECVD; penyahjerapan ion; punaran plasma
Abstract
Cotton gauze wound dressings used
in wound management have been found incapable of maintaining an optimal
environment for wound healing. To address this issue, non-thermal nitrogen
plasma treatment was applied to gauze wound dressings using a radio frequency
plasma enhanced chemical vapor deposition (RF-PECVD) system. This research
investigates the effects of different radio frequency (RF) power levels (50,
60, 70, 80, and 90 W) during plasma treatment to identify the optimal RF power
for enhancing the functionality of gauze as wound dressings, as determined by
the fabric’s surface properties. Field emission scanning electron microscopy
(FESEM) and Fourier transform infrared spectroscopy (FTIR) were used to study
the morphology and chemical bonds of untreated and nitrogen plasma-treated
samples, respectively. The FESEM images showed a grooved fiber structure with
micro-cracks on all treated surfaces. The most pronounced micro-cracks were
observed on samples treated with RF power levels of 50 W, 60 W, and 70 W. The
FTIR spectra indicated an increase in the intensity of O-H and C-O functional
groups in plasma-treated samples compared to untreated ones. Sample treated at
70 W RF power exhibited the highest intensity of C-N and N-H functional groups.
These functional groups contribute to increased cell adhesion potential,
wettability, and biocompatibility of the fabric. This study demonstrates that
the effect of RF power during nitrogen plasma treatment can modify the surface
properties of gauze, potentially increasing its function as wound dressing.
Keywords:
Cotton gauze; ion desorption; PECVD; plasma etching; RF power
REFERENCES
Abd Aziz, S.A. & Awang, R.
2020. Chemical bonding composition and growth mechanism of
a-CNx thin films by low-Temperature rf-PECVD technique. Sains Malaysiana 49(6): 177-184. doi:10.17576/jsm-2020-4906-24
Awang, R., Purhanudin, N. & Salman, N.S. 2018.
Effect of radio frequency power on A-CN X film properties and its performance
as humidity sensors. Sains Malaysiana 47(11): 2863-2867.
doi:10.17576/jsm-2018-4711-29
Borda, L.J., Macquhae, F.E. & Kirsner, R.S. 2016.
Wound dressings: A comprehensive review. Current Dermatology Reports 5(4): 287-297. doi:10.1007/s13671-016-0162-5
Cai, S., Wu, C., Yang, W., Liang, W., Yu, H. & Liu,
L. 2020. Recent advance in surface modification for regulating cell adhesion
and behaviors. Nanotechnology Reviews 9(1): 971-989.
doi:10.1515/ntrev-2020-0076
de los Arcos, T., Awakowicz, P., Benedikt, J., Biskup,
B., Böke, M., Boysen, N., Buschhaus, R., et al. 2023. PECVD and PEALD on
polymer substrates (part I): Fundamentals and analysis of plasma activation and
thin film growth. Plasma Processes and Polymers 21(2): 2300150.
doi:10.1002/ppap.202300150
Dhivya, S., Padma, V.V. & Santhini, E. 2015. Wound
dressings - A review. BioMedicine (Netherlands) 5(4): 24-28.
doi:10.7603/s40681-015-0022-9
Eswaramoorthy, N. & McKenzie, D.R. 2017. Plasma
treatments of dressings for wound healing: A review. Biophysical Reviews 9(6): 895-917. doi:10.1007/s12551-017-0327-x
Fazeli, M., Florez, J.P. & Simão, R.A. 2019.
Improvement in adhesion of cellulose fibers to the thermoplastic starch matrix
by plasma treatment modification. Composites Part B: Engineering 163:
207-216. doi:10.1016/j.compositesb.2018.11.048
Feng, C., Hu, Y., Jin, C., Zhuge, L., Wu, X. &
Wang, W. 2020. The effect of atmospheric pressure glow discharge plasma
treatment on the dyeing properties of silk fabric. Plasma Science and
Technology 22(1): 015503. doi:10.1088/2058-6272/ab4c4e
He, H., Zhou, W., Gao, J., Wang, F., Wang, S., Fang,
Y., Gao, Y., Chen, W., Zhang, W., Weng, Y., Wang, Z. & Liu, H. 2022.
Efficient, biosafe and tissue adhesive hemostatic cotton gauze with controlled
balance of hydrophilicity and hydrophobicity. Nature Communications 13:
552. doi:10.1038/s41467-022-28209-8
Hong, T., Yin, J.Y., Nie, S.P. & Xie, M.Y. 2021.
Applications of infrared spectroscopy in polysaccharide structural analysis:
Progress, challenge and perspective. Food Chemistry: X 12(November):
100168. doi:10.1016/j.fochx.2021.100168
Inbakumar, S., Morent, R., de Geyter, N., Desmet, T.,
Anukaliani, A., Dubruel, P. & Leys, C. 2010. Chemical and physical analysis
of cotton fabrics plasma-treated with a low pressure DC glow discharge. Cellulose 17(2): 417-426. doi:10.1007/s10570-009-9369-y
Jelil, R.A. 2015. A review of low-temperature plasma
treatment of textile materials. Journal of Materials Science 50:
5913-5943. doi:10.1007/s10853-015-9152-4
Jiang, X., Wu, L., Yang, K., Liu,
T., Liao, W., Zhang, C., Zhang, L., Liu, Y. & Jiang, X. 2021. Kinetic etch front instability responsible for roughness
formation in plasma etching. Applied Surface Science 543: 148862.
doi:10.1016/j.apsusc.2020.148862
John, M.J. & Anandjiwala, R.D. 2009. Surface
modification and preparation techniques for textile materials. In Surface Modification
of Textiles, edited by Wei, Q. Woodhead Publishing. hlm. 1-25.
doi:10.1533/9781845696689.1
Kordestani, S.S. 2019. Wound Care Management. Atlas
of Wound Healing. Elsevier Inc. hlm. 31-47.
Kramar, A.D., Obradović, B.M., Vesel, A., Kuraica,
M.M. & Kostić, M.M. 2018. Surface cleaning of raw cotton fibers with
atmospheric pressure air plasma. Cellulose 25(7): 4199-4209.
doi:10.1007/s10570-018-1820-5
Luna, S.M., Silva, S.S., Gomes, M.E., Mano, J.F. &
Reis, R.L. 2011. Cell adhesion and proliferation onto chitosan-based membranes
treated by plasma surface modification. Journal of Biomaterials Applications 26(1): 101-116. doi:10.1177/0885328210362924
Mather, R.R. 2009. Surface modification of textiles by
plasma treatments. Surface Modification of Textiles. Woodhead Publishing
Limited. doi:10.1533/9781845696689.296
Mowafi, S., Abou Taleb, M. & El-Sayed, H. 2022. A
review of plasma-assisted treatments of textiles for eco-friendlier water-less
processing. Egyptian Journal of Chemistry 65(5): 737-749. doi:10.21608/EJCHEM.2022.123590.5520
Naebe, M., Li, Q., Onur, A. & Denning, R. 2016.
Investigation of chitosan adsorption onto cotton fabric with atmospheric
helium/oxygen plasma pre-treatment. Cellulose 23(3): 2129-2142.
doi:10.1007/s10570-016-0915-0
Pransilp, P., Pruettiphap, M., Bhanthumnavin, W.,
Paosawatyanyong, B. & Kiatkamjornwong, S. 2016. Surface modification of
cotton fabrics by gas plasmas for color strength and adhesion by inkjet ink
printing. Applied Surface Science 364: 208-220. doi:10.1016/j.apsusc.2015.12.102
Prysiazhnyi, V., Kramar, A., Dojcinovic, B., Zekic, A.,
Obradovic, B.M., Kuraica, M.M. & Kostic, M. 2013. Silver incorporation on
viscose and cotton fibers after air, nitrogen and oxygen DBD plasma
pretreatment. Cellulose 20(1): 315-325. doi:10.1007/s10570-012-9817-y
Rashidi, A., Shahidi, S., Ghoranneviss, M.,
Dalalsharifi, S. & Wiener, J. 2013. Effect of plasma on the zeta potential
of cotton fabrics. Plasma Science and Technology 15(5): 455-458.
doi:10.1088/1009-0630/15/5/12
Shahidi, S., Rashidi, A., Ghoranneviss, M., Anvari, A.,
Rahimi, M.K., Moghaddam, M.B. & Wiener, J. 2010. Investigation of metal
absorption and antibacterial activity on cotton fabric modified by low
temperature plasma. Cellulose 17(3): 627-634. doi:10.1007/s10570-010-9400-3
Siow, K.S., Abdul Rahman, A.S., Ng, P.Y. & Majlis,
B.Y. 2020. Sulfur and nitrogen containing plasma polymers reduces bacterial
attachment and growth. Materials Science and Engineering C 107: 110225.
doi:10.1016/j.msec.2019.110225
Vajpayee, M., Singh, M. & Ledwani, L. 2021. Non-thermal plasma treatment of cellulosic biopolymer to enhance its surface property for various applications: A review. Materials Today: Proceedings 43: 3250–3255. doi:10.1016/j.matpr.2021.01.905
Yilma, B.B., Luebben, J.F. & Tadesse, M.G. 2021.
Effect of plasma surface modification on comfort properties of polyester/cotton
blend fabric. Materials Research 24(3).
doi:10.1590/1980-5373-MR-2021-0021
Zanini, S., Grimoldi, E., Citterio, A. & Riccardi, C. 2015. Characterization of atmospheric pressure plasma treated pure cashmere and wool/cashmere textiles: Treatment in air/water vapor mixture. Applied Surface Science 349: 235–240. doi:10.1016/j.apsusc.2015.05.010
Zhou, C.E., Kan, C.W., Yuen, C.W.M., Lo, K.Y.C., Ho,
C.P. & Lau, K.W.R. 2016. Regenerable antimicrobial finishing of cotton with
nitrogen plasma treatment. BioResources 11(1): 1554-1570.
doi:10.15376/biores.11.1.1554-1570
*Corresponding
author; email: rozida@ukm.edu.my
|